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ABSTRACT: Viscoelastic effects on mixing flows obtained with kneading
paddles in a single-screw, continuous mixer were explored using 2-D finite
element method numerical simulations. The single-mode Phan–Thien Tanner
nonlinear, viscoelastic fluid model was used with parameters for a dough-like
material. The viscoelastic limits of the simulations were found using elastic
viscous stress splitting, 4 × 4 sub-elements for stress, streamline upwind, and
streamline upwind Petrov–Galerkin (SUPG). Mesh refinement and comparison
between methods was also done. The single-screw mixer was modeled by taking
the kneading paddle as the point of reference, fixing the mesh in time. Rigid
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rotation and no slip boundary conditions at the walls were used with inertia
taken into account. Results include velocity, pressure, and stress profiles. The
addition of viscoelasticity caused the shear and normal stresses to vary greatly
from the viscous results, with a resulting loss of symmetry in the velocity and
pressure profiles in the flow region. C© 2003 Wiley Periodicals, Inc. Adv Polym
Techn 22: 22–41, 2003; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/adv.10038
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Introduction

U se of high shear, single or twin blade, batch or
continuous mixers for the processing of highly

viscous materials is an important unit operation in
the production of a wide variety of products, includ-
ing adhesives, doughs, paints and coatings, candy,
resins and rubbers, pet foods, pharmaceutical prod-
ucts, soaps, etc. Successful mathematical modeling
and computer simulation of the flow and mixing in
a mixing operation would be a cost effective way
to obtain quantitative mixing parameters. It is far
less expensive than machining and building mixer
geometries and testing them for mixing ability. It
is also one of the most effective ways to gain in-
sights about the operation of a system where ade-
quate physical measurements to characterize the sys-
tem are not readily possible, such as in an opaque
dough, paint, gum, resin, or rubber. One can per-
ceive mathematical simulation as an effective way
to nonintrusively probe a process and learn about
what goes on inside the material being mixed. How-
ever, modeling of mixing flows in realistic mixers,
especially with viscoelastic materials, such as dough
or synthetic polymers, is challenging due to the com-
plex geometry and rheology. These geometries may
also lead to many singularities that cause the mod-
eling methods to break down with viscoelastic fluid
models. In fact, use of viscoelastic fluid models in
mixing simulations is rare. Finite element method
(FEM) modeling of a simple paddle impeller in a
cylindrical vessel for an Oldroyd-B fluid was done
by Ann-Archard and Boisson1 using the Galerkin
method and 4 × 4 Streamline upwind (SU) and com-
pared to similar experimental velocity data.2,3 The
2-D assumption in this case was found to give simu-
lation results that agreed well with the experimental
results. Petera and Nassehi4 used the Maxwell and
the Phan–Thien Tanner (PTT) models in a simula-
tion of a free surface viscoelastic flow for rubber in

an internal mixer. The modeling was done using
Galerkin FEM with SU Petrov–Galerkin (SUPG). The
free surface was handled by a modified pseudoden-
sity method that eliminated the convection terms in
the free surface model equations and thus the need
for artificial physical parameters. The results were
validated with a novel experimental rig.5 Boundary
element analysis of a simple mixer with a Maxwell
linear viscoelastic fluid model found the viscoelas-
ticity to only influence the evolution of stress at
the rotor and walls, but not the velocity profile.6

Dhanasekharan and Kokini7 modeled the 3-D flow
of a single mode PTT fluid in the metering zone of a
completely filled single-screw extruder. It was mod-
eled by means of a stationary screw and rotating bar-
rel. The leakage flow between the screw and barrel
was neglected, leading to minimal effects due to vis-
coelasticity being observed.

There are many computational fluid dynamics
(CFD) approaches to discretizing the equations of
conservation of momentum, mass, and energy to-
gether with the constitutive equation that defines the
rheology of the fluid being modeled and the bound-
ary and initial conditions that govern the flow be-
havior in a particular mixer. The most important
of these are finite difference (FDM), finite volume
(FVM), and finite element (FEM). Others such as
spectral schemes, boundary element methods, and
cellular automata are used in CFD but their use is
limited to special classes of problems.8 The modeling
of viscoelastic fluid flows has been most successful
with FEM. During early attempts at modeling vis-
coelastic fluid flow with FEM, the solutions invari-
ably became unstable at unrealistically low values
of the Weissenberg number (Wi) or the related Deb-
orah number (De).9 This problem, called the “high
Weissenberg number problem,” is for the most part
due to the hyperbolic character of the advective term
in the viscoelastic constitutive equations, which in-
creases in importance with increasing De.10 This is es-
pecially apparent at geometrical singularities such as
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sudden contractions, sudden changes in boundary
conditions as represented by the stick-slip problem,
and flow around a sphere or cylinder, all of which
are considered benchmark problems in viscoelastic
flow simulation.11 At singularities, which are found
in most practical problems including the flow in mix-
ers, there are stress concentrations that increase to in-
finity as the mesh is refined. In addition, the presence
of normal stresses gives rise to very thin boundary
layers in complex flows. The high stress gradients in
these layers are believed to be the cause of problems
for most numerical methods.10

In order to ease the problems caused by the high
stress gradients, Marchal and Crochet12 introduced
the use of 4 × 4 subelements for the stresses, which
was later proven to be optimal.13 These bilinear sub-
elements smoothed the mixed method solution of
the Newtonian stick-slip problem, as well as aided
in the convergence of the viscoelastic problem. In or-
der to deal with the hyperbolic nature of the advec-
tive term of the constitutive equation, Marchal and
Crochet12 implemented two different modifications
to the standard mixed Galerkin method: the consis-
tent SUPG formulation14 and the nonconsistent SU
method. The basic idea of SU is to add artificial dif-
fusivity (or viscosity) that acts only in the flow di-
rection. Extended to a Petrov–Galerkin formulation,
the standard Galerkin weighting functions are mod-
ified to weigh the element upwind of the node more
heavily than the downwind element. Because the ar-
tificial diffusivity is applied only in the flow direc-
tion, crosswind distortions are eliminated. When the
weighting is consistent across all terms, there is no
overall artificial diffusivity effect.

However, when originally applied to the stick-slip
problem by Marchal and Crochet,12 SUPG still failed
when the constitutive equations were coupled with
the equations of motion and the incompressibility
constraint. Therefore, they applied the artificial dif-
fusivity only to the advective term of the constitu-
tive equation. This nonconsistent application of the
SU method, when combined with the use of 4 × 4
subelements for stress, had great success, reaching
De numbers as high as 64 for a circular contraction.
Unfortunately, the nonconsistent SU does give rise to
artificial stress diffusion along the streamlines. There
has been some question of the importance of the arti-
ficial stress diffusion along the streamlines, with Luo
and Tanner15 claiming it actually changed the nature
of the constitutive equation and affected the results at
any level of mesh refinement. However, while the er-
ror of the stress term is of O(h) or worse16,17 where h
is on the order of the mesh size, advection dominates

diffusion as the mesh size decreases so that the artifi-
cial diffusivity term becomes negligible.18 Therefore,
the accuracy of problems solved using the SU 4 × 4
method must be verified on at least two, preferably
three, finite element meshes of decreasing element
size.17,19 Further work with SUPG showed that while
it is not as robust where there are stress singularities,
it is more accurate (to O(h3)), especially for unequal
element sizes, and converges faster than SU.16,17

The success of the artificial diffusivity concept to
deal with the “high Weissenberg problem” led to
other methods as well. One of the most successful
methods is known as elastic viscous stress splitting
(EVSS). This is done by splitting the stress tensor into
the sum of the viscoelastic and Newtonian contribu-
tions, which regularizes the behavior of the constitu-
tive equations. The Newtonian contribution is given
by 2ηD, where D is the strain rate tensor and η is the
Newtonian (or solvent) viscosity. D is considered as
an additional unknown that is approximated with a
least square method.20–22

In light of these advances in using differential vis-
coelastic models in FEM simulations and the lack
of published examples using this technology with
highly viscous, viscoelastic materials in mixers, the
application of these techniques to the development
of flow profiles for a dough-like material in a 2-D
simplified mixer that can be used to mix dough is
explored.

Materials and Methods

PROBLEM DESCRIPTION
AND MESH DEVELOPMENT

The 2-D geometry for a single-kneading paddle
in a 2′′ circular barrel with complete fill is shown in
Fig. 1. Flow occurs in the shaded area between the
barrel and the paddle. The paddle shape was cal-
culated using the equations of Booy23 for a 2′′, dual
lobed, self-wiping, twin-screw mixer, with α and β
as shown in Fig. 1 . The paddles used were actually of
the 2′′ Continuous Processor of Readco Manufactur-
ing (York, PA), which is a low pressure, corotating,
twin-screw mixer used in such diverse applica-
tions as dough mixing, polymeric condensation
and other chemical reactions involving polymers,
incorporation of light weight powders into highly
viscous materials such as bulk molding compounds
and rubbers, chocolate conching, production of
pharmaceutical pastes for pill formulation, etc. The
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FIGURE 1. Geometry used in the simulations23 where
α = 4.7◦ (0.082 rad.), β = 9.6◦ (0.167 rad.), Rs = 2.54 cm
(barrel radius), Rβ = 1.269 cm, Rα = 2.4895 cm, and
CL = 3.809 cm (twin shaft clearance). For (β/2) ≤ θ ≤
(90 − α/2), Rp = Rs − hθ (paddle radius) and hθ =
Rs(1 + cos(θ − β/2)) − (CL

2 − Rs
2 sin2(θ − β/2))0.5.

geometry seen here is similar to that seen in the
kneading zone of a single-screw extruder. However,
since the velocity in the z direction is not taken into
account and the pressure is low, this simulation
more realistically models a batch mixer consisting
of a paddle in a cylindrical tank.3 To fix the mesh in
time, the paddle is taken as the frame of reference
with the barrel rotating in a counterclockwise
direction. For a cylindrical system, Rauwendaal
et al.24 found the pressure and velocity gradients
to be the same for either the barrel rotating or the
paddle rotating, except for the effect of centrifugal
and Coriolis forces on the boundary conditions. In
order to take into account centrifugal and Coriolis
forces, rigid rotation of the entire system is assumed
at a speed of −�, which is in a clockwise direction.
The Coriolis force, which is a deflecting force due to
flows in both the radial and angular directions, and
the centrifugal force, which is in the radial direction
resulting from the angular velocity, are pseudoforces
due to being in a noninertial reference frame. A
measure of the importance of the Coriolis forces
is the Rossby number, which is of the order of the
ratio of the blade radius to the channel height in an
extruder. If the Rossby number 
1, Coriolis forces

are of negligible effect, while at around unity they
are of mixed effect, and are dominate at �1.25 Using
a generalized Newtonian fluid in a single-screw
extruder Spalding et al.26 found centrifugal and
Coriolis forces with a Rossby number of ∼10 to be
negligible. In our case it varies from a minimum of
1 in the middle of the channel to a value of 100 in
the gap, and therefore the Coriolis force may have
some non-negligible effects. Simulations at 1 and
100 rpm without rigid rotation were done in order
to explore the importance of these pseudoforces
in this geometry. Inertia was taken into account
with density set at 1.204 gm/cm3, which is the
density of 43.2% moisture flour–water dough. The
tangential velocity of the barrel was set to �Rs. No
slip conditions were used at the barrel and paddle
walls.

The meshes used in this work were created using
Gambit (Fluent). The 1480 element mesh pictured
in Fig. 2 is representative of the meshes. The 360 ele-
ment mesh was designed to be coarse with increased

FIGURE 2. An example of the meshes used in the
simulations. It is the 1480 element mesh.
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refinement in areas of high gradients as indicated
by experience. In this case it is at the wall, in the
gap, and near the entrance to the gap at the blade
tip. The ratios used in the mesh spacing were cho-
sen to meet this goal while at the same time creating
quadrilateral elements as near to square as possible
as indicated by the mesh tests described later. Ideally,
refinement is done by dividing elements, but keep-
ing the original nodes in the same place. The jump
from 360 to 600 doubled the elements on the sides
of the paddles. After that the meshes were refined
by adding elements as well as by setting the spac-
ing ratios such that the element shape is optimized
according to the mesh tests. Direct doubling quickly
makes the number of elements enormous and the
element shape deteriorates.

The 360 and 600 element meshes have 5 elements
across the channel, including across the gap, while
the 1480 and 2080 have 10. The 3360 element mesh
has 12. A ratio in spacing between nodes of 1.2 (360
and 600) or 1.1 (rest) from walls to the center of chan-
nel was used (e.g., if the spacing between the wall
node and the 2nd node is 1, then the spacing be-
tween the 2nd node and the 3rd node will be 1.1,
between 3rd and 4th 1.21, etc.) The 360 and 600 el-
ement meshes have 26 and 50 elements across the
paddle sides and 10 across the paddle tip with a 1.2
ratio from the paddle tip. The paddle sides for the
1480 element mesh has 60 elements (1.1 ratio from
tip) while the 2080 element mesh has 90, and the 3360
element mesh has 120 with a ratio from the paddle
tip of 1.05 on the wall and 1.1 on the paddle. The
paddle tips contain 14 elements (1480 and 2080) or
20 (3360) with ratio of 1.1 from the edge to the center
the center of the tip.

Gambit offers a variety of mesh tests to evalu-
ate the quality of meshes for use in FEM. Ideally,

TABLE I
Results of Mesh Tests

Elements in the Mesh

Test 360 600 1480 2080 3360

Equiangle skew
<0.1 35.6% 32.7% 46.2% 56.1% 54.9%
<0.25 91.1% 87.3% 94.0% 88.2% 86.6%
<0.5 100% 100% 100% 100% 100%

Stretch
<0.25 1.1% 40.7% 14.9% 49.8% 43.6%
>0.5 51.1% 12.0% 50.3% 22.1% 16.4%

perfectly square (or perfectly triangular) 2-D ele-
ments are needed for the most effective use of FEM.
However, realistic geometries do not lend them-
selves to the use of only perfect elements. One of
the goals in mesh creation is to keep the shape of the
elements as close to ideal as possible, while still accu-
rately representing the real geometry. These quality
tests are measures of how well a given mesh has suc-
ceeded in meeting this goal. Equiangle skew, which
looks at how close the angles of each mesh quadri-
lateral are to 90◦, is defined as

QEAS = max
{

�max − 90
90

,
90 − �min

90

}

where �max and �min are the largest and smallest angle
respectively in degrees. Stretch ratio, which looks at
how close each mesh quadrilateral is to an equilateral
element, is defined as

Qs = 1 −
√

2[min(s1, s2, s3, s4)]2

max[d1, d2]2

where si indicates side and di indicates diagonal. For
both of these tests, a value of 0 indicates a perfect
element while a value of 1 indicates a degenerate
element. They combine to give a good overall picture
of the quality of the meshes in this work.27

As shown in Table I, all mesh quadrilaterals fall
into the excellent (<0.25) or good (<0.5) range for
equiangle skew, although only the 2080 element
mesh is considered a high quality mesh with an av-
erage value <0.1. The 360 element and 1480 element
meshes score only fair for stretch ratio, while the 2080
element mesh again scores the best. Unfortunately,
the elements that scored only good according to the
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mesh tests occur near the blade tips, where instabil-
ity will occur due to the high gradients at the wall
and the blade surface, as well as the stress concen-
tration at the corner. The 2080 element mesh had the
best-shaped elements in these regions, and the result
is a more stable solution.

FLUID MODEL AND FLOW PARAMETERS

A typical application of this type of mixer is the
processing of dough. Therefore, the PTT nonlinear
viscoelastic model28 was chosen for its ability to
model the behavior of a model flour–water dough as
well as its relatively good behavior in FEM simula-
tion. The PTT constitutive model takes the following
form

exp
[
ε
λ

η1
tr(T1)

]
T1 +λ

[(
1 − �

2

) ∇
T1 + �

2

	

T1

]
= 2η1D

The parameters are based on those of Dhanasakaran
et al.29 as follows: the partial viscosity η1 = 88888.9,
poise ε = 0.08, and � = 0.01. The relaxation time λ is
evolved from a value of zero (the Newtonian case)
to the point where the simulation diverges and will
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FIGURE 3. Steady shear profiles for single mode PTT models used in the 2-D simulations with the four mode PTT
dough model of Dhanasekharan et al.29 as a reference.

no longer give a solution. The stress was consid-
ered to be divided with a purely viscous component
T2 = 2η2D, such that the total stress T = T1 + T2
with D being the rate of deformation. The result-
ing viscosity ratio was set to η1/(η1 + η2) = 1/9. The
steady shear profiles for several of the values of the
relaxation time used in this work are shown in Fig. 3.
The shear thinning behavior of these models is ex-
hibited only in a very limited range of shear rates that
range from around 2–200 s−1 for λ = 0.5 s to about
0.001–0.1 s−1 for λ = 1000 s. We shall see later that
the shear rate range observed in the mixer at 1 rpm
was from around 0.1 to 30 s−1, which is in the shear
thinning range of most of the models considered.
Figure 3 also shows that the 4 mode dough model of
Dhanesekaran et al.29 is very similar in viscosity to
the single mode PTT models used in this work in the
shear rate range of interest, especially at the lower
relaxation times.

Typically in a mixer, the Deborah Number, which
is defined as the ratio of the characteristic material
time to the characteristic process time, is taken to
be De = λ� and is the definition we use here.30 The
Weissenburg number, which is defined as the ratio
of the elastic force to the viscous force, is described
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as Wi = (
1/η)�, where 
1 is the primary normal
stress coefficient and η is the viscosity.30 The primary
normal stress coefficient is defined as


1 ≡ −(τ11 − τ22)
�̇ 2 = N1

�̇ 2

under steady simple shear flow conditions. It is
related empirically to the shear rate (�̇ ) by the
expression30 
1 = m′|�̇ |n′−2. In the case of the PTT
model, η and 
1 are shear rate dependant, so Wi
does not have a global meaning but only a local. The
primary normal stress coefficient (
1) for the PTT
model in viscometric flow28 is given by


1 = 2
η1λ

1 + �(2 − �)λ2�̇ 2

The viscometric flow relations will be used as esti-
mates of the actual values during mixing and simu-
lation.

SIMULATION METHODOLOGY

For flow problems of viscoelastic fluids of the
differential type, Polyflow first develops a mixed
Galerkin formulation of the governing equations.
For this steady-state, 2-D isothermal flow where
the domain χ is the space between the paddle and
the barrel, the viscoelastic extra-stress, velocity, and
pressure are approximated respectively by means of
the finite expansions:

T a
1 =

NT∑
i=1

T i
1φi va =

Nv∑
j=1

v jψ j pa =
Np∑

k=1

pkπk

where φi , ψ j , and πk represent given finite element
basis functions, while T i

1, v j , and pk-are unknown
nodal values. Substituting the approximation into
the isothermal governing equations, using the mixed
Galerkin method, the following set of equations is
obtained:

∫
χ

φi

[
exp

[
ε
λ

η1
tr(T1)

]
T a

1 + λ
δT a

1

δt
− 2η1Da

]
dχ = 0

(constitutive equation)

∫
χ

{
ψ jρ

[
dva

dt
− f

]
+ ∇ψT

j ·[−pa I + 2η2Da + T a
1

]}
dχ

=
∫
∂χ

ψ j � · n ds (conservation of momentum)

∫
χ

πk[∇ · va ] dχ = 0 (conservation of mass)

where δTa
1

δt = �
2

	

T1 + (1 − �
2 )

∇
T1 and f contains the Cori-

olis and centrifugal terms. Whenλ vanishes, the con-
stitutive equation reduces to the generalized Newto-
nian case.31 Because of the hyperbolic nature of the
λv · ∇T1 term from the upper- and lower-convected

derivatives of the extra-stress
∇
T1, the accuracy and

stability of the mixed Galerkin formulation deterio-
rates as the elasticity number increases in flows with
boundary layers or singularities.10 The numerical re-
sults can then be stabilized by the use of viscoelastic
extra-stress interpolations such as SU or SUPG. The
most robust technique, SU, is done by applying an
artificial diffusivity K = k̄ vv

v·v to the hyperbolic term
only in the stream-wise direction. The discrete con-
stitutive equation then becomes:

∫
χ

φi

[
A

(
T a

1 , λ
) · T a

1 + λ(�̇ )
δT a

1

δt
− 2η1Da

]
dχ

+
∫
χ

λk̄va

va · va

(
va · ∇T a

1

) · ∇φi dχ = 0

where k̄ is a scalar on the order of the mesh size.12

While this technique gives rise to artificial extra-
stress diffusion along the streamlines, the impor-
tance of stress diffusivity decreases when the finite
element mesh is refined.17 Therefore, five meshes of
decreasing size were used to verify the results. In
contrast, SUPG applies K to all the terms in the dis-
crete constitutive equation, eliminating the artificial
diffusion.14

The viscoelastic extra-stress field interpolation
techniques used in this work are elastic-viscous
stress splitting (EVSS) and 4 × 4 bilinear subele-
ments for the stress. In EVSS, the stress tensor is
split into elastic and viscous components. When the
T = T1 + T2 form of the stress tensor is used, the con-
vected derivative of the rate of strain emerges, which
requires a second-order derivative of the velocity
field. To overcome this, D is considered an unknown

28 VOL. 22, NO. 1



2-D NUMERICAL SIMULATION OF VISCOELASTIC FLUIDS IN A SINGLE-SCREW MIXER

-5000

0

5000

10000

15000

20000

25000

30000

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

X Coordinate (cm)

τ 2
2 

(g
/c

m
2 )

3360 elements
2080 elements
1480 elements
360 elements

FIGURE 4. Normal stress τ22 during mesh refinement for the PTT Model with λ = 100 s on a circle of radius 2.489 cm.

and is obtained by a least squares approximation
using the definition D ≡ 1

2 [(∇v) + (∇v)T ].20,22 The
modified discrete constitutive equation and strain
rate equation are as follows:

∫
χ

φi

[
A(T a , λ) · T a + λ(�̇ )

[
δT a

δt
+ 2η1

∇
Da

]]
dχ = 0

and
∫
χ

�i
[
Da − (∇va + ∇T va )/2

]
dχ = 0

Alternatively, the solution can be stabilized by divid-
ing each quadrilateral in the mesh into 16 bilinear
subelements for calculating the stress.12

An iterative technique called evolution was used
to gradually introduce the source of the instability
into the solution. For differential, viscoelastic prob-
lems, evolution is usually done on either the relax-
ation time (λ) or the mixing speed (�). This gives
gradually increasing values of De. In this case it
has been chosen to evolve λ at a range of fixed
mixing speeds that go from a very low value of 1
rpm, which is in effect creeping flow, to a more typ-
ical speed for the mixer on which this simulation is
based of 100 rpm. Then it is possible to see what

level of λ can be achieved at each speed, using the
above numerical techniques. Evolution is applied
to the relaxation time such that λi = f (Si ) × λmax,
where f (Si ) = Si = (Si−1 + 	Si ) where S0 = 0 and
Sfinal = 1 and 	S0 = 0.0001. Then the solution is ob-
tained using Newton’s iterative scheme with the con-
verged solution of the previous step used as the
initial guess when available. If the solution con-
verges 	Si = 	Si−1 × 1.5. If the solution diverges,
	Si = 	Si/2 and the iteration is re-done until 	Si is

TABLE II
Analysis of Mesh Refinement Error of τ22 at 1 rpm with
λ = 100 s

Elements in the Mesh

Test 360 1480 2080

Pearson correlation 0.9735 0.9908 0.9953
coefficient (R)

Without tip elements 0.9950 0.9994 0.9997

R2 0.9477 0.9817 0.9906

Data read at points located on a circle of 2.489 cm are com-
pared with linear estimates of data from the 3360 mesh at the
same points.
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TABLE III
Limits of De Reached by Several Methods Used in Viscoelastic Simulations During Mesh Refinement at 1 rpm

EVSS SUPG 4 × 4 SUPG EVSS SU 4 × 4 SU

Mesh Size λ (1 rpm) De λ (1 rpm) De λ (1 rpm) De λ (1 rpm) De

360 elements 0.327 0.034 0.23 0.024 651.04 68.2 1000 104.7

600 elements 0.178 0.019 1.04 0.109 14.12 1.47 23.4 2.45

1480 elements 0.089 0.009 0.089 0.009 0.73 0.076 131.78 13.8

2080 elements – – 0.066 0.007 0.79 0.082 543.58 56.9

3360 elements – – – – 0.58 0.061 110.32 11.6

less than a minimum 	Smin = 1 × 10−5 and the sim-
ulation stops.31

Results and Discussion

VISCOELASTIC LIMITS AND ACCURACY
OF SIMULATION RESULTS

The coarsest mesh of 360 elements is somewhat
inaccurate, but by the time the mesh size reached
1480 elements, the discretization error is minimal.
The main difference between meshes with the vis-
coelastic fluids is the magnitudes of the pressure,
shear stress, and, in particular, normal stresses calcu-
lated at the corner singularity as shown in Fig. 4. The
variation in the values of normal stress τ22 with a re-
laxation time of 100 s at the blade surface is the worst
case of the results read on a circle of radius 2.489 cm.
(Note that the data on this and subsequent graphs
is read where a circle of the given radius crosses a
mesh element. The x-axis is the x-coordinate of the
data points with the origin the barrel center. Most
x values will generate two data points at the corre-
sponding positive and negative y positions.) Statis-
tical tests of the equality of linear estimates of 3360
element mesh values with the actual values from the
360, 1480, and 2080 element meshes are shown in
Table II. The square of the Pearson correlation coef-
ficient (R2) of all three meshes to the 3360 element
mesh is adequate. If the elements within 0.04 cm of
the tip are disregarded, the results are nearly exact for
the 1480 and 2080 element mesh, indicating that ar-
tificial stress diffusion is negligible throughout most
of the flow domain.

Coarser meshes allowed convergence at higher
De since effect of the discontinuity is smoothed.
This mesh refinement effect has been noted by other

authors.22 The more accurate SUPG technique is not
adequate for this geometry because of the corner
singularity at the blade tip, as is demonstrated in
Table III. The less computationally intensive EVSS
technique is also not as effective as using 4× 4 bi-
linear subelements for stress. Therefore, the 4× 4 SU
technique was determined to be the method neces-
sary to solve this problem. Even this technique was
unable to reach the desired relaxation time of 1000 s
at low rpm values. The excellent quality of the 2080
element mesh is demonstrated by the high relax-
ation time it is able to achieve in relation to the other
meshes before the solution diverges. Instabilities at
the start of evolution with the higher speeds necessi-
tated the use of different parameters for the evolution
procedure. A 	Smin of 1 × 10−5 used 1 and 10 rpm
while a 	Smin of 1 × 10−6 used 60 and 100 rpm.

At the high rpm values that are more represen-
tative of the actual conditions found in this type of
mixer, the instabilities in the calculations and some of
the effects of the viscoelasticity seem to disappear as
seen in Table IV. At 1 and 10 rpm, the calculations are
highly unstable and able to achieve a maximum De of
only 13.5. However, at 60 rpm, while there is some
instability in the calculations at the start of evolu-
tion, the desired maximum relaxation time of 1000 s

TABLE IV
Limits of De Reached at Several Blade Speeds Using
the 1480 Element Mesh and 4 × 4 SU

Blade Speed λ De

1 rpm 131.78 13.8

10 rpm 12.8 13.4

60 rpm 1000 6283

100 rpm 1000 10472

1000 was the highest λ attempted.
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is achieved. The last evidence of instability in the 60
and 100 rpm simulations occurs at De ≈ 13.5. This
is at the same De at which the 1 rpm and 10 rpm
simulations broke down with this mesh. One pos-
sible reason that the higher rpm simulations were
able to go beyond De = 13.5 is the high value of the
shear rates throughout the flow at those velocities.
The shear rate range seen at 100 rpm is on the order
of 10–1000 1/s as shown in Fig. 12. From the steady
shear profiles of the PTT constitutive models shown
in Fig. 3, it becomes evident that the shear thinning
region would be of consequence with only the very
smallest values of the relaxation time, where in fact
the simulation did show evidence of instability. For
the higher values of the relaxation time, the behavior
of the Newtonian component of the viscosity dom-
inates the simulation, thus stabilizing the solution
and allowing the high De values that were achieved.
Another way to think about this is to note that when
the De is very high, either the characteristic material
time is long or the characteristic process time is short
or both. In either case, the material will not have time
to relax and will follow its unrelaxed behavior pro-
file. In this case, that is the behavior of the Newtonian
component.
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FIGURE 5. Pressure profiles at 1 rpm on the 2.489 cm radius circle with the 1480 element mesh for the PTT at several
relaxation times.

Another possible explanation for the behavior of
the simulation at 100 rpm is that at higher velocities,
the inertial forces come to dominate the elastic forces
generated in the flow. A measure of the importance
of elastic effects on mixing flow is the elasticity num-
ber (El) defined as El = Wi/Re = 
1/(ρD2) where
D is the blade diameter and ρ is the fluid density.
When El > 0.25–0.5, elastic forces have been found
to dominate the inertial forces, causing complete
flow reversal the secondary flow profile in some
mixer geometries.30,32,34 In our case, when λ = 100 s
the El � 0.25 at 100 rpm in the high shear regions
and El 
 0.5 at 1 rpm throughout most of the flow
domain, indicating that elasticity dominates at the
low speed and inertia is important in high shear re-
gions near the blade tip at the high speed. The effect
of the inertia dominating the flow in the gap region
is to dampen the viscoelastic effects and therefore
stabilize the solution.

The centrifugal and Coriolis forces, which were
included through use of rigid rotation, were a fac-
tor at high values of the relaxation time. For the
PTT model at 1 rpm and λ = 100 s, they changed
the stresses about 13%, the velocity magnitude by
an average of 0.4%, and shear rate and pressure by
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an average of 2–3%. At an equivalent De with λ = 1 s
at 100 rpm they changed the solution only negligibly.
No change in any variable was detected at 1 rpm in
simulations using a Newtonian fluid or a shear thin-
ning Bird–Carreau generalized Newtonian fluid. A
side benefit of including the Coriolis and centrifu-
gal forces with the PTT model fluid was that they
had a stabilizing effect on the solution. Without rigid
rotation, the maximum De achieved was only 13.4
at 100 rpm, while at 1 rpm it was only possible
to reach that De level by using the more effective,
but more computationally expensive 2080 element
mesh.

VISCOELASTIC EFFECTS

The pressure variation profiles at 1 rpm for a se-
ries of relaxation times read on a circle of radius 2.489
cm are shown in Fig. 5, where the pressure value
of zero is equivalent to ambient. These profiles are
representative of the overall mapping of the pres-
sure, since the pressure varies mainly with the an-
gle from the center of rotation. It is interesting to
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FIGURE 6. Pressure profiles at 1 rpm on the 2.489 cm radius circle for the Bird–Carreau viscous model
(T1 = 2[η∞ + (η0 − η∞)(1 + λ2γ 2)(n−1)/2]D) fluids with η0 = 100000 and η1 = 11111.1 poise at several levels of shear
thinning. Note that the steady shear profile of the Bird–Carreau model with λ = 60 and n = 0.2 is nearly identical to that
of the single mode PTT model used in this work with λ = 100.

note that at a relaxation time of 0 s where the PTT
model is equivalent to the Newtonian model, the
pressure on the front and back of the blade is equal
and opposite. However, as the relaxation time in-
creases, two changes are observed: the magnitude of
the pressure drops and there is a loss of symmetry in
the profile. The change in magnitude was observed
for purely shear thinning materials as shown in Fig. 6
for a series increasingly shear thinning Bird–Carreau
viscous constitutive model fluids, but not the loss of
symmetry between the front and back of the blades.
Therefore, it appears that the loss of symmetry in the
pressure differential between the front and back of
the blades is a purely viscoelastic effect. Note also
that at a relaxation time of 0.5 s, the asymmetry of
the PTT fluid is of a different form from that seen at
the higher relaxation times.

Related to effect on the pressure profiles, a loss of
symmetry with increasing viscoelasticity is also ev-
ident in the velocity distributions. The velocity pro-
file in the rotating reference frame is the secondary
profile since the primary tangential components of
the velocity were removed. It has been shown that
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viscoelastic effects are more apparent in the sec-
ondary profile.30 In this case, the velocity profile con-
sists of a central point around which the bulk of fluid
is circulating as shown in Fig. 7 and some fluid flow-
ing through the gap, with dead zones just before and
behind the blade tip where the flow splits between
the main circulating flow and the flow through the
gap as shown in Fig. 8. The asymmetry is evident
in the center of circulation, which moves toward the
front of the blade with increasing viscoelasticity as
shown in Fig. 7b. Also, the blade tip dead zones

FIGURE 8. Velocity magnitude distribution at 1 rpm in the gap region for relaxation times of (a) 0 s (Newtonian case)
and (b) 100 s where the units of velocity are cm/s.

are symmetric in the Newtonian case, but become
increasingly asymmetric with increased viscoelastic-
ity as demonstrated in Fig. 8b. The velocity divided
by the time per revolution profile at x = 0 is shown
in Fig. 9. Note that the most distortion of the profile
due to viscoelasticity is found with the 0.5 s relax-
ation time material and gradually returns to a profile
similar to the Newtonian material as the relaxation
time increases at 1 rpm. This is in spite of the fact
that the pressure decreases substantially due to shear
thinning, thus decreasing the pressure differential
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resistance to the flow. The flow through a gap in one
revolution is 2.5–3% of the overall material, as calcu-
lated by taking the sum over the gap of the average
velocity between two points multiplied by the dis-
tance between the points, dividing by the time per
revolution, and then comparing the result to the to-
tal flow area. Viscoelastic effects appear to enhance
flow through the gap slightly in accordance with the
amount of distortion seen in the velocity profile.

As the blade velocity increases, the velocity pro-
file in the gap at a relaxation time of 100 s remains

FIGURE 11. Velocity magnitude distributions at 100 rpm in the gap region for relaxation times of (a) λ = 1 s and (b)
λ = 100 s where the units of velocity are cm/s.

stable until 100 rpm, where inertia starts to be-
come significant. Also, the effects of the viscoelas-
ticity are less visible in the pressure and veloc-
ity profiles at 100 rpm and λ = 100 s as shown in
Figs. 10 and 11b, again indicating that the New-
tonian component is dominating at this relaxation
time as discussed previously. In contrast, at λ =
1 s the 100 rpm profiles (see Figs. 10 and 11a) are
similar in shape to those at 1 rpm with λ = 100 s
(see Figs. 5 and 8b), which is where the De is
equivalent.
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FIGURE 13. Shear stress distributions at 1 rpm for relaxation times of (a) 0 s (Newtonian case) and (b) 100 s where the
units of stress are gm/cm2.

FIGURE 14. Normal stress distributions at 1 rpm for a Newtonian fluid (λ = 0 s), (a) τ11 and (b) τ22 where the units of
stress are gm/cm2.
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FIGURE 15. Normal stress distributions at 1 rpm for a relaxation time of λ = 100 s, (a) τ11 and (b) τ22 where the units of
stress are gm/cm2.

The shear rate in the flow domain is low, except
near the blade tip and in the gap. Shear rates in the
gap and approaching the front and backsides of the
on a circle of 2.489 cm are shown in Fig. 12. From
the steady shear profiles in Fig. 3, it is seen that for
λ = 0.5, 10 and 51 s, the models are in the shear
thinning regions at 1 rpm. In contrast, the Newto-
nian λ = 0 has a constant viscosity of η0 and when
λ = 100 s the shear rate is such that a constant vis-
cosity of η∞ has been achieved in the gap. This is
reflected in the way the shear rate varies in the gap
in Fig. 12a, with the constant viscosity fluids linear
and the shear thinning fluids curved. The slightly
viscoelastic λ = 0.5 s fluid has a much higher shear
rate at the tip than the Newtonian or long relaxation
time fluids, reflecting the differences in the pressure
profile at this relaxation time noted earlier. The vis-
coelastic fluids have asymmetry in their shear rate
profiles also, with higher shear rates at the front of
the blade seen in Fig. 12b.

Changes in the stress distributions with the ad-
dition of viscoelasticity are dramatic as shown in
Figs. 13–15. For the Newtonian case shown in Fig. 13,
the normal stresses are not zero since this is not a vis-
cometric flow, but they are equal and opposite such
that the first normal stress difference N1 = |τ11| −
|τ22| ≈ 0. The first normal stress difference varies

from zero near the corner singularity because of the
error in the SU method. This error is not found for
a Newtonian fluid solved using Galerkin’s method
without the use of SU. For the viscoelastic case, the
expected power law relationship for 
1 is seen as
shown in Fig. 16. Comparisons of the simulation re-
sults with the PTT steady shear expression for the
first normal stress coefficient calculated at the same
shear rates show that the simulation results are qual-
itatively in agreement with the calculated results, es-
pecially when taking into account that this is not a
viscometric flow simulation. The shear rates used
are the second invariants of the rate of deformation
tensors calculated in the simulation. At the higher
shear rates that are found near the corner singular-
ity, some deviation in the simulation data is apparent
in the graph, which again is thought to be due to the
error inherent in the SU method.

Conclusions

The process of solving a flow problem in a mixer
for a differential viscoelastic fluid, using FEM is laid
out, with a thorough look at the issues involved in
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FIGURE 16. Primary normal stress difference (N1) vs. shear rate (γ̇ ) at 1 rpm for a relaxation time of λ = 100 s.

developing a mesh, choosing an appropriate tech-
nique to handle the instabilities inherent in differen-
tial viscoelastic fluid models, understanding the er-
ror in the solution, and analysis of the data in terms
that apply to mixers. Of the techniques available to
us for the handling of differential viscoelastic fluid
models, only the SU with 4 × 4 subelements for stress
technique of Marchal and Crochet12 was able to solve
this problem with a level of viscoelasticity useful for
the study of dough mixing. While the error of the
SU method is evident near the corner singularity in
all the meshes studied, throughout most of the flow
domain the mesh discretization error is of negligible
importance so that qualitatively all the meshes give
similar information. The effect of increasing rpm is
to increase the magnitude of all the variables includ-
ing the shear rate, and therefore shift the important
viscoelastic effects to lower relaxation times. The im-
portance of inertial forces also increases at higher
speeds and thus stabilizes the solution. Centrifugal
and Coriolis forces were found to generally stabilize
the solution of the viscoelastic problem, with non-
negligible effects on all variables at higher values of
the relaxation time. In contrast, they had no mea-
surable effect on simulations with purely viscous
models. The general effect of viscoelasticity shown

in this work is to introduce asymmetry into the pres-
sure and flow profiles, as well as greatly modifying
the stress profiles from those for the Newtonian case.
There are also reductions in the magnitudes of the
pressure and stresses that are due to shear thinning
effects.

The implication of these results is that a useful
simplifying approach to modeling a viscous, vis-
coelastic materials such as dough or synthetic poly-
mers that have a spectrum of relaxation times and
viscosities is to tailor the viscoelastic models to in-
clude only those parameters that affect the rheol-
ogy in the shear rate range of interest. For example,
since only relaxation times up to around 2 s are shear
thinning in the shear rate range generated in this ge-
ometry at 100 rpm, higher relaxation times can be
dropped since they would not be able to relax at this
characteristic process time and therefore are not con-
tributing to the viscoelastic or shear thinning effects.
Also, the stabilizing Newtonian component would
need only be set to a value that would take over at
shear rates higher than those seen in the process of
interest, rather than the actual infinite shear viscos-
ity seen in experiments. These simplifications allow
the challenges of FEM with differential viscoelas-
tic fluid models to be overcome, while allowing the
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exploration of the effects of real fluids in a realistic
geometry.
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